

Remote Sensing of Trace Gases

Carl Malings, Melanie Follette-Cook, Pawan Gupta, Sarah Strode

NASA Air Quality Remote Sensing Training for EPA, March 21-23, 2023

Satellite Remote Sensing of Trace Gases for Air Quality

Overview

- This presentation will cover several trace gases relevant to air quality.
 - O₃, NO₂, HCHO, SO₂, CO, and CH₄
- Some fundamentals of observing trace gases
- Information on specific data products
 - Limitations & strengths for air quality
- Specific examples of how data are used

November 28, 2017

TROPOMI NO₂

Spatial Resolution = $5.5 \times 7.0 \text{ km}^2$

Measuring Trace Gases from Space

- Satellites detect backscattered UV, visible, and/or emitted thermal radiation.
- We can determine a "spectral" fingerprint" of each trace gas.
- Retrieval algorithms infer physical quantities such as number density, partial pressure, and column amount.
- Little information can be obtained on the vertical distribution of trace gases in the troposphere from a nadir view (limb view can help).

Measuring Trace Gases from Space

m

- Satellites detect backscattered UV, visible, and/or emitted thermal radiation.
- We can determine a "spectral fingerprint" of each trace gas.
- Retrieval algorithms infer physical quantities such as number density, partial pressure, and column amount.
- Little information can be obtained on the vertical distribution of trace gases in the troposphere from a nadir view (limb view can help).

Solar Radiation Spectrum

Image Credit: Wikipedia, Solar Spectrum

Optical Depth = Cross Section * Trace Gas Abundance

Optical depth or thickness (τ_{λ}) is a measure of the extinction of the solar beam by trace gases. In other words, trace gases in the atmosphere can block sunlight by absorbing or by scattering light.

$$T_{\lambda} = \sigma_{\lambda} \Omega$$

Where Ω is the trace gas abundance over the atmospheric path length, such as a vertical column.

Note: Optical depth is calculated in different ways for trace gases and aerosols.

Martin, R.V., Satellite remote sensing of surface air quality, Atmos. Environ., 42, 7823-7843, 2008.

Hyperspectral Instruments

Current, Past, and Future Satellite UV-Visible-IR Spectrometers

Instrument	Satellite	Wavelength	
GOME (Defunct)	ERS-2	240 – 795 nm	
SCIAMACHY (Defunct)	Envisat	240 – 2380 nm	
OMI	EOS-Aura	270 – 500 nm	
GOME-2	Metop-A, B, & C	240 – 790 nm	
OMPS	Suomi-NPP, JPSS Series	250 – 380 nm	
TROPOMI	Sentinel-5P	270 – 775 nm, 2305 – 2385 nm	
TEMPO (Future)	Intelsat 40e (Geostationary)	290 – 490 nm, 540 – 740 nm	

Trace Gases: Spatial Resolution

- Spatial resolution of current satellite instruments (~10 km diameter)
 - Good enough to map tropospheric concentration fields on local to regional scales
 - Fine enough to resolve individual power plants and large cities
- For species with short atmospheric lifetimes (e.g., NO₂), averaging over larger satellite pixels can lead to significant dilution of signals from point sources, complicating quantitative analysis and separation of emission sources.
- For quantitative analysis, level 2 and high-resolution gridded Level 3 data are optimal.

Evolution of Spatial Resolution

TROPOMI: Impact of Resolution

Spatial Resolution = $5.5 \times 7.0 \text{ km}^2$

Trace Gases: Temporal Resolution

- The current fleet of polar-orbiting satellites with hyperspectral instruments enables a
 - Cannot provide any information about diurnal variations
- Future Geostationary satellites with hyperspectral instruments will enable hourly temporal resolution (during daylight hours) for normal operations and even higher temporal resolution (\sim 10 minutes) during targeted special operations.

revisit time on the order of 1 day, with overpasses typically in the early afternoon.

- GEMS (East Asia)
 - Launched Feb. 19, 2020
- TEMPO (North America)
 - Ready for Launch ~April 2023
- Sentinel-4 (Europe)
 - Instrument fitting to host sat.

Trace Gases: Using Level 3 vs. Level 2 Data

- Advantages of Level 3 Data:
 - Uniform grid (usually lat/lon)
 - One file per time period (day, month, year, etc.)
 - Smaller sized files
 - Quality flags and filtering criteria have been applied
- Limitations of Level 3 Data:
 - Typically, at coarser resolution than L2
 - L2 observation typically at the same location as the L1 source data
 - Space & time averaging can obscure meaningful differences
 - Not all instruments have L3 products (e.g., TROPOMI)

OMI & TROPOMI

OMI vs TROPOMI

OMI		TROPOMI
Aura	Satellite	Sentinel-5P
July 2004	Launched	Oct 2017
Nadir-Viewing Imaging Spectrometer	Instrument	Nadir-Viewing Imaging Spectrometer
264 – 504 nm (UV/VIS)	Spectral Range	270 nm – 2.3 µm (UV/VIS/NIR/SWIR)
0.42 – 0.63 nm	Spectral Resolution	0.55 nm
13x24 km² at Nadir	Spatial Resolution	5.5 x 3.5 km² at Nadir 7 x 28 km² (UV1 Band) 7 x 7 km² (SWIR Bands)
Daily	Global Coverage	Daily
~ 13:45 LST	Local Overpass Time	~ 13:30 LST*

^{*}synchronized within 5 minutes of SNPP

Products from OMI vs. TROPOMI

OMI		TROPOMI	
Tropospheric and Total Column NO ₂	Swath, Gridded (0.25° and 0.1°)	Tropospheric and Total Column NO ₂	Swath (5.5 km x 3.5km)
Total Column SO ₂	Swath, Gridded (0.25°)	Total Column SO ₂	Swath (5.5 x 3.5 km)
Aerosol Index	Swath	Aerosol Index	Swath (5.5 x 3.5 km)
Total Column HCHO	Swath, Gridded (0.1°)	Tropospheric Column HCHO	Swath (5.5 x 3.5 km)
Tropospheric and Total Column O ₃	Gridded (0.25°)	Tropospheric, Total Column O ₃ , Profiles	Swath (5.5 x 3.5 km)
		Aerosol Layer Height	Swath (5.5 x 3.5 km)
		Carbon Monoxide (CO)	Swath (7 km x 5.5 km)
		Methane (CH₄)	Swath (7 km x 5.5 km)

Ozone in the Troposphere

m

- Why measure tropospheric ozone?
 - Negative health impacts for humans, crops, and ecosystems
 - Important to tropospheric chemistry
- Retrieval of boundary layer ozone from satellite remote sensing remains daunting.
 - Separation of total column into stratospheric and tropospheric contributions needed
 - Potential for significant free tropospheric contribution to the tropospheric column
- Tropospheric ozone products cannot be used for air quality monitoring

Martin, R.V., Satellite remote sensing of surface air quality, Atmos. Environ., 42, 7823-7843, 2008.

Ozone Products

OMI

- Available at https://disc.gsfc.nasa.gov/
- Total Column Ozone
 - OMTO3
- DOAS Total Column
 - OMDOAO3e
 - Level 3 (0.25° x 0.25° Daily)
- TOMS-Like Ozone
 - OMTO3e
 - Level 3 (0.25° x 0.25° Daily)

TROPOMI

- Available at https://disc.gsfc.nasa.gov/
- Total Column Ozone
 - S5P_L2__O3_TOT,S5P_L2__O3_TOT_HiR
- Tropospheric Column Ozone
 - S5P_L2__O3_TCL
 - Gridded Product: 0.5° x 1.0° Resolution
 - Only Available 20°S to 20°N
- Ozone Vertical Profiles
 - S5P_L2__O3__PR_HiR
 - Vertical Resolution: 6 km
 - Horizontal Resolution: 30 x 30 km²

Tropospheric Column NO₂

Nitrogen Dioxide (NO₂)

- Why measure NO₂?
 - NO₂ is an ozone precursor and health irritant.
 - Surface Sources: Fires, industrial and transportation sources, stationary sources (e.g., power plants), but emissions can vary depending on fuel type and conditions.
 - High concentrations in the planetary boundary layer (PBL)

OMI Detects NO₂ Changes in Pollution Over Time

OMI NO₂ Products

Available at https://disc.gsfc.nasa.gov/

OMNO2 Level 2 Native Resolution

Aura OMI OMNO2 (17:47 UTC October 11, 2006)

OMNO2g Level 2 Gridded (0.25° x 0.25°) no pixel averaging

OMNO2d Level 3 Gridded (0.25° x 0.25°) pixel averaging

New OMI NO₂ V4

- V4 OMI NO2 Standard Product (OMNO2) with updated AMF [Lamsal et al., 2021]
 - https://amt.copernicus.org/articles/14/455/2021/
 - New geometry-dependent surface reflectivity (GLER)
 - New (GSFC) O₂-O₂ cloud products with GLER (OMCDO2N)
 - Improved Field-Of-View (FOV) specific terrain pressure
 - Improved ice/snow treatment using retrieved scene LER/pressure
 - Internal consistency between NO₂ and cloud retrievals
- Other features kept same as in V3.1 (released 2018) [Krotkov et al., 2017]
 - https://www.atmos-meas-tech.net/10/3133/2017/
 - New algorithm for slant column retrievals
 - Use of higher-resolution (1° x 1.25°) GMI monthly a priori NO₂ profiles with year specific emissions

OMI V4 Tropospheric NO₂ Columns Higher than V3.1 Over Polluted Regions

June-July-August 2005

OMI NO₂ Parameter Information (OMNO₂)

SDS Name	Description	Unit	Notes
ColumnAmountNO2Trop	Tropospheric Column NO ₂	Molec / cm²	Use only scenes with: radiative cloud fraction < 0.5-0.7 solar zenith angle < 85° terrain reflectivity < 0.3
TerrainReflectivity		Unitless	Scale Factor: 0.001
CloudRadianceFraction		Unitless	Scale Factor: 0.001
SolarZenithAngle		Deg	In geolocation fields

- All fill values are high negative numbers: $(-2.100 \approx -1.26765 \times 10^{30})$
- All row anomaly pixels have fill values
- Preserve small negative pixel values when computing statistics (e.g., averages)

OMNO2_HR Gridded High Resolution OMI NO₂ (0.1° x 0.1°)

- Based on NASA standard product
- Daily:
 - https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2d_HR/OMNO2d_HRD/
 - Available in hdf5 format
- Monthly:
 - https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2d_HR/
 OMNO2d_HRM/
 - Available in ASCII (text), NetCDF format, and TIF images

TROPOMI NO₂ Products

Available at https://disc.gsfc.nasa.gov/

S5P_L2__NO2___ - Level 2 - 7km x 3.5km (4/30/2018 - 8/6/2019)

Sentinel-5P/TROPOMI L2 Nitrogen Dioxide Product 2018-08-10 Orbit#04271

S5P_L2__NO2___HiR - Level 2 - 5.5km x 3.5km (v1: 8/6/2019 - 7/1/2021; v2: 7/1/2021 onwards)

Copernicus TROPOMI Nitrogen Dioxide Product (Orbit #9397)

TROPOMI NO₂ Validation

http://mpc-vdaf.tropomi.eu/

Validation against
PANDORA and MAX-DOAS
surface remote sensing
networks

Update of Verhoelst et al., AMT v14, p481, 2021, produced by BIRA-IASB for the S5p MPC VDAF on 01-Mar-2022 using NDACC reference data

Product ID	Stream	Product	Bias	Dispersion	Special features
L2_NO2	NRTI	NO ₂ troposphere	-37%	2.6 Pmolec/cm ²	
		NO ₂ stratosphere	-5%	0.3 Pmolec/cm ²	Tatal NO laisa varias viitla aaluussa assavust.
		NO ₂ total	0±50%	-	Total NO ₂ bias varies with column amount:
	OFFL RPRO	NO ₂ troposphere	-34%	2.6 Pmolec/cm ²	positive bias over low pollution, negative bias over high pollution,
		NO ₂ stratosphere	-6%	0.3 Pmolec/cm ²	-with 7 Pmolec/cm ² as a threshold.
		NO ₂ total,low	+4%	0.9 Pmolec/cm ²	-With 7 i molec/cm as a threshold.
		NO ₂ total,high	-21%	2 Pmolec/cm ²	

Content Source: TROPOMI Nitrogen Dioxide Validation Summary Website: https://mpc-vdaf.tropomi.eu/index.php/nitrogen-dioxide

How does TROPOMI compare with OMI?

- Operational TROPOMI tropospheric NO₂ columns are lower than OMI in polluted areas; the difference is due to the use of the new GLER-cloud in the OMNO2 V4 product (communication: Lok Lamsal).
- Striping issue could impact long term trend
- Reasonable agreement with Pandora

TROPOMI NO₂ Parameter (SDS) Information

SDS name	Description	Unit	Notes
nitrogendioxide_tropospheric_column	Tropospheric Column NO ₂	mol/m ²	Estimated accuracy provided in nitrogendioxide_tropospher ic_column_precision
nitrogendioxide_total_column	Total Column NO ₂	mol/m ²	Estimated accuracy provided in nitrogendioxide_total_colu mn_precision
qa_value	Data Quality Value	Unitless	Range 0 (worst) to 1 (best)

• Recommended to use qa_value > 0.75, use of qa_value > 0.5 is acceptable

HCHO

Formaldehyde (HCHO)

- Why measure formaldehyde?
 - It is an ozone precursor and can serve as a proxy for total VOC chemical reactivity and isoprene emissions.
- Caution when using these data for quantitative analyses
- OMI and TROPOMI
 - Biased high for small HCHO levels
 - Biased low for high HCHO levels
 - Likely require spatial and/or temporal averaging to cancel random noise

ow High

Where to get HCHO Data

OMI – NASA/Smithsonian Retrieval

- Level 2G Data (0.25° x 0.25°): https://disc.gsfc.nasa.gov/datasets/O MHCHOG_V003/summary
- Level 3 Data (0.1° x 0.1°): https://disc.gsfc.nasa.gov/datasets/O MHCHOd_003/summary
- Readme Document: https://www.cfa.harvard.edu/atmosph ere/Instruments/OMI/PGEReleases/REA DMEs/OMHCHO_README_v3.0.pdf

OMI – BIRA Retrieval

 Level 3 daily files, monthly, and annual averages: http://h2co.aeronomie.be/

TROPOMI

 Level 2 (5.5 km x 3.5 km): https://disc.gsfc.nasa.gov/datasets/\$5 HCHO <u> HiR 2/summary</u>

Using HCHO/NO₂ Ratios

m

- Ozone formation chemistry is sensitive to relative NO_X and VOC concentrations in different regimes.
- NO_2 can be a remotely sensed proxy for all NO_x .
- HCHO can be a remotely sensed proxy for all VOCs.
- Regime Distinctions (Rough Estimates)
 - HCHO/NO₂ < 1: VOC-Limited
 - $HCHO/NO_2 > 2-4$: NO_X -Limited

Using HCHO/NO₂ Ratios

- Relative Errors
 - OMI-derived ratio error estimated at ~35% (Duncan et al. 2010)
 - TROPOMI-derived ratio errors <50% for urban areas (Souri et al. 2023)
- Higher Spatial Resolution preferred to distinguish regimes in urban and suburban areas
- Best Practices (Jin et al. 2018)
 - Recommend using weekly or monthly averages (based on OMI)
 - Recommend ignoring areas of low NO₂ (tropospheric column below 2.5x10¹⁵ molecules cm⁻²)

Image Credit: Souri et al. 2023, Characterization of errors in satellite-based HCHO/NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties. https://doi.org/10.5194/acp-23-1963-2023. Figures 7c, 13

Using HCHO/NO₂ Ratios

- Ratios vary throughout the diurnal cycle; late afternoon satellite overpass time biases estimates towards NO_x sensitivity.
 - Highlight benefits of geostationary observations (e.g., TEMPO)
- Ratio confounded by Isoprene emissions, especially in Southeastern USA (Duncan et al. 2010)
- Correcting for HCHO bias and recalculating NO₂ retrievals based on higher resolution air mass factors from regional models improves ability to represent observed ozone formation regimes (Goldberg et al. 2022)

Credit: Goldberg et al. 2022, Evaluating NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and HCHO. https://doi.org/10.5194/acp-22-10875-2022. Figure 11.

Anthropogenic & Volcanic SO₂

SO₂ in the Boundary Layer

- Why measure SO₂?
 - SO₂ has also been linked to adverse respiratory effects.
 - Contributes to acid deposition
 - Sources: Volcanoes, coal, and oil burning

Agua MODIS visible image of the Nabro (Eritrea) eruption on June 13, 2011, with the SO2 plume overlaid.

Perspective: What is Considered High SO₂?

OMI SO₂ from Sulfur Mine Fire October 24, 2016

Left: https://earthobservatory.nasa.gov/IOTD/view.php?id=88994;

Right: https://so2.gsfc.nasa.gov/

NASA's Applied Remote Sensing Training Program

Perspective: What is Considered High SO₂?

#1 U.S. Source: Bowen Coal Power Plant, Georgia (3500 MW), SO₂ Emissions: 170 kT in 2006

"In **2008**, the mammoth construction program yielded the first scrubbers, sophisticated equipment that will reduce our overall systems emissions by as much as 90 percent."

Georgia Power Website

Source: V. Fioletov, et al., 2011

OMI SO₂ Parameter (SDS) Information (OMSO₂)

SDS name	Description	Unit	Notes
ColumnAmountSO2_PBL	Total Column SO ₂	DU	 Assumes SO₂ well mixed <1 km Use for most applications (including AQ) Use only rows 4-54 (where first row = 0) Use only scenes with radiative cloud fraction < 0.3 solar zenith angle < 70°
ColumnAmountSO2_TRL /TRM/TRU/STL	Total Column SO ₂	DU	 Assumes SO₂ plume at 3/8/13/18 km Use for volcanic outgassing & eruptions All rows can be used Use scenes with solar zenith angle < 70°
RadiativeCloudFraction		Unitless	No scale factor
SolarZenithAngle		Deg	In geolocation fields

- As of the latest version (v1.3), the OMSO2 documentation does not recommend using the included data quality flags for screening.
- All fill values are high negative numbers $(-2.^{100} \approx -1.26765 \times 10^{30})$.

OMI Gridded PBL SO₂

m

- PBL Dataset Short Name = OMSO2e
 - Product Level: 3
 - Daily, beginning October 1, 2004
 - Resolution: 0.25° x 0.25°
 - File Size (approx): 5 mb
 - Screened for data quality (e.g., OMI row anomaly, clouds, etc.)
 - PBL emissions assumption
 - "Best" pixel selected
 - https://disc.gsfc.nasa.gov/datasets/OM
 SO2e 003/summary

Aura OMI OMSO2e October 7, 2006

TROPOMI SO₂ Products

Available at https://disc.gsfc.nasa.gov/

S5P_L2__SO2____ - Level 2 - 7km x 3.5km (5/6/2018 – 8/6/2019)

S5P_L2__SO2____HiR - Level 2 - 5.5km x 3.5km (v1:8/6/2019 – 7/13/2020; v2:7/13/2020 onwards)

Copernicus Sentinel-5P/TROPOMI Sulfur Dioxide Product (Orbit#7037)

TROPOMI SO₂ Parameter (SDS) Information

SDS Name Description		Unit	Notes	
sulfurdioxide_total_ vertical_column	Total Column SO ₂	mol/m ²	Total column from the surface to the top of the atmosphere, assuming all SO2 is in the PBL *Not realistic for less polluted or remote areas	
sulfurdioxide_total_ vertical_column_1km/ _7km/_15km	Total Column SO ₂	mol/m ²	Total SO ₂ columns assuming 1 km thick box profile at ground level, centered at 7 km, and centered at 15 km above sea level	
qa_value	Data Quality Value	Unitless	Only applies to total column	

• Currently, should only use qa_value > 0.5

Carbon Monoxide

- Why measure CO?
 - Major global precursor for O₃, and dominant sink for OH
 - Relatively long lifetime (~1-2 months) makes it a useful tracer of transport
- Typically measured as a column density
- Instruments (e.g., MOPITT, AIRS) tend to have good sensitivity to CO in the midtroposphere (~500 mb)
- Current Sensors: AIRS, MOPITT, IASI, TROPOMI

Measurements of Pollution in The Troposphere (MOPITT)

https://www2.acom.ucar.edu/mopitt

- Operational since 2000
- Global coverage every 3 days
- Nadir, Pixel Size:
 - 22 km² at nadir
- Swath Width: 640 km
- Equator Crossing Times:
 - 10:30 (descending)
- Three Retrievals:
 - TIR: Highest temporal stability
 - NIR: Daytime, column only
 - TIR/NIR (Joint): Greatest sensitivity to lower troposphere, but larger errors

Image Source: NCAR UCAR

- Profile Measurements:
 - 10 Pressure Levels: Surface 100 hPa
- Data Source:
 - Level 2 pixelhttps://subset.larc.nasa.gov/mopitt/
 - Level 3 gridded 1° x 1° resolution
 https://giovanni.gsfc.nasa.gov/giovanni/

Atmospheric Infrared Sounder (AIRS)

http://airs.jpl.nasa.gov/

- Operational since Sep 2002
- Daily coverage
- Nadir, Pixel Size:
 - 14 km at nadir
 - 41x21 km edges
- Swath Width: 1,650 km
- Equator Crossing Times:
 - 13:30 (ascending)
 - 1:30 (descending)

- Profile Measurements:
 - 9 vertical layers
 - 901.866 hPa 0.16 hPa
- Data:
 - https://disc.gsfc.nasa.gov
 - Level 2 pixel
 - Level 3 gridded 1° x 1° resolution

Source: Figure 6a from McMillan et al. (2011)

AIRS vs. MOPPITT CO – Daily Coverage

77

AIRS Level 2 from NRT Website

AIRS Level 3, 1°x1° from Giovanni

MOPPITT Level 3, 1°x1°

Infrared Atmospheric Sounding Interferometer (IASI)

http://bit.ly/ESA-IASI

- Operational since 2006
- Daily coverage
- Nadir, Pixel Size
 - 12 km² at nadir
- Swath Width: 2,200 km
- Equator Crossing Times:
 - 9:30 (descending)
 - 21:30 (ascending)
- CO Columns Available in NRT
 - Within three hours of observation
- 18 1km layers, plus total above 18km
- Data:
 - https://iasi.aeris-data.fr/co/
 - Level 2 pixel, daily
 - Level 3 gridded, monthly 1° x 1° resolution

Source LATMOS-ULB/03MSAF/Met0p-B

Ether/Production

TROPOMI CO Products

Available at https://disc.gsfc.nasa.gov/

S5P_L2__CO___1 - Level 2 - 7km x 7km (4/30/2018 - 8/6/2019)

S5P_L2__CO___HiR - Level 2 - 7km x 5.5km (4/30/2018 onwards)

Sentinel-5P/TROPOMI L2 Carbon Monoxide Product 2018-08-15 Orbit#04347

Copernicus Sentinel-5P TROPOMI Carbon Monoxide Product (Orbit# 9408)

Comparison Chart - CO

	MOPITT	TROPOMI	AIRS	IASI
Product/Pixel size	22 x 22 km ²	7 x 5.5 km ²	14 x 14 km ²	12 x 12 km ²
Swath Width	650 km	2600 km	1,650 km	2,200 km
Global Coverage	3 days	daily	2x per day	2x per day
Overpass Time (Local Time)	10:30	13:30	1:30, 13:30	9:30, 21:30
L3 Product Resolution	L3: 1° Grid	NO L3 Product	L3: 1° Grid	L3: 1° Grid
Products Available	L2 Swath L3 Daily, Monthly	L2 Swath	L2 Granule L3 Daily, Monthly	L2 Daily L3 Monthly
Vertical Sensitivity	Column: Mid & Lower Troposphere	Column: Mid & Lower Troposphere	Mid Troposphere	Mid Troposphere

- Methane
- Why measure CH₄?
 - Methane is a potent greenhouse gas (80x more absorbing than CO_2 , but with a shorter atmospheric lifetime).
- Major releases due to leaks in natural gas infrastructure
 - "Super-emitters" can be found (& fixed?) quickly with satellite data.
- Distributed sources (agriculture, wetlands) more difficult to quantify with bottom-up emission inventories.
- Extreme high resolution from EMIT, GHGSat
- TROPOMI has column CH₄ products.

3-km-long methane plume from ONG facility leak detected southeast of Carlsbad, New Mexico by NASA EMIT instrument on ISS.

Image Credit: NASA/JPL-Caltech

Credit: NASA JPL, https://www.nasa.gov/feature/jpl/methane-super-emitters-mapped-by-nasa-s-new-earth-space-mission

TROPOMI CH₄ Products

Available at https://disc.gsfc.nasa.gov/

S5P_L2_CH4___ - Level 2 - 7km x 7km (4/30/2018 - 8/6/2019)

S5P_L2_CH4___HiR - Level 2 - 7km x 5.5km (v1: 8/6/2019 - 7/1/2021; v2: 7/1/2020 onwards)

Copernicus Sentinel-5P TROPOMI Methane Product (Orbit# 9397)

Questions?